Génération d'une séquence numérique synchrone à partir de bascules synchrones JK

METHODE
Sect° 1353 Page 1 / 2

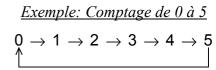
Présentation

Une séquence numérique synchrone est une succession de valeurs numériques binaires évoluant dans le temps à la fréquence d'un signal d'horloge.

 $\begin{array}{c|c} & & Q_A \\ \hline \\ G\acute{e}n\acute{e}rateur \\ de s\acute{e}quence \\ num\acute{e}rique \end{array} \xrightarrow{Q_B} \begin{array}{c} Q_A \\ Q_B \\ Q_C \\ Q_D \end{array}$

Les sorties, n bits notés Q_A à Q_X , peuvent constituer par exemple:

•une séquence de comptage numérique, chaque bit représentant alors un poids binaire 2ⁱ, i variant de 0 à n-1;


•des signaux de synchronisation de fonctions électroniques diverses, évoluant les uns par rapport aux autres d'après un cycle particulier.

La séquence est dite « synchrone » car les sorties ne changent d'état que sur un front actif du signal d'horloge appliqué en entrée. Les effets « mémorisation » et « séquencement » sont assurés par des bascules synchrones universelles de type **JK**.

Méthode

1. Décrire le cycle numérique...

...si le cycle représente l'évolution d'une valeur numérique. Déterminer le nombre de bascules nécessaires à l'élaboration de ce cycle. Sur n bits, 2ⁿ valeurs différentes peuvent être codées.

Par exemple, sur 3 bits, on peut coder les valeurs numériques 0 à 7.

2. Décrire le cycle pour chacune des sorties binaires

Les sorties Q_A à Q_X sont ici indicées « n-1 » car elles représentent leur état AVANT que l'événement « front actif » n'apparaisse.

	N	Qc _{n-1}	Q _{B_{n-1}}	QA _{n-1}	
	0	0	0	0	
	~ _1	0	0	1	
	2	0	1	0	
	3	0	1	1	
	4	1	0	0	
/		1	0	1	

3. Donner, pour chacun des états des sorties, l'état qui devra apparaître APRES le front actif

Ce sont en fait les trois colonnes précédentes décalées d'une ligne représentant un période d'horloge.

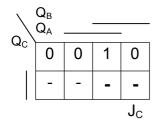
	N	Qc _{n-1}	Q _{B_{n-1}}	QA _{n-1}	Qcn	Q_{B_n}	QA _n
	0	0	0	0	<u>و</u>	0	1
	3	0	0	1	9	1	0
	2	0	1	0	<u>Q</u>	1	1
	3	0	1	1	_1	0	0
$ \cdot $	4	1	0	0		0	1
/		1	0	1	0	0	0

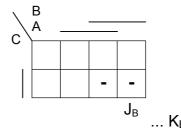
Génération d'une séquence numérique synchrone à partir de bascules synchrones JK

METHODE

Sect° 1353 Page 2 / 2

4. Donner, pour chacun des états et pour chaque sortie, les niveaux à appliquer sur les entrées J et K de la bascule, afin de passer de l'état actuel « Q_{n-1} » à l'état suivant le front « Q_n ».

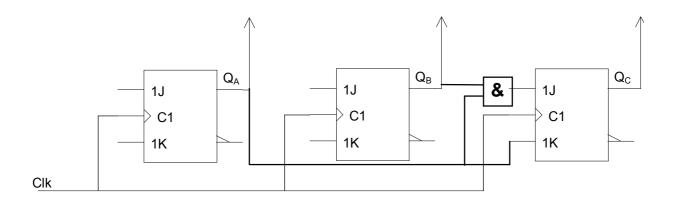

Les niveaux J et K à appliquer sont issus de la table des transitions de cette bascule. Le tiret « - » représente un état indifférent 0 ou 1.


$Q_{n-1} \mid Q_n$	J	K
0 0	0	-
0 1	1	-
1 0	-	1
1 1	-	0

Avec l'expérience, on pourra se passer des colonnes « Q_n », puisqu'il suffit de se référer à la ligne située <u>dessous</u> un état pour connaître l'état suivant.

	N	Qc _{n-1}	Q _{B_{n-1}}	QA _{n-1}	Qcn	Q _B _n	QAn	J _C	K _C	J_{B}	K _B	J_A	K _A
	0	0	0	0	0	Q	1	<u>.</u> Q	-	0	-	1	-
	→ _1	0	0	1	Q	1	0	0 -	1	1	-	-	1
	2	0	1	0	W	1	1	0	/ -	-	0		
	3	c(O)	1	1	(1)	0	0	(1	-	-	1		
\setminus	4		0	0	1	0	1	<u></u>	4				
		1	0	1	0	0	0	-	1				

5. Établir, pour chacune des sorties J_i et K_i , le tableau de Karnaugh en fonction des entrées Q_{n-1} .



6. En déduire les équations de chacune des variables J_i et K_i.

$$J_C = Q_A.Q_B$$
 $J_B = ...$ $J_A = ...$ $K_C = Q_A$ $K_B = ...$ $K_A = ...$

7. Tracer le schéma final: bascules, équations des J_i et K_i déterminées précédemment.

