1. Objectifs

Être capable de :

- Mettre en œuvre des détecteurs électroniques TOR 3 fils sur des entrées TOR d'automate ;
- Programmer le pilotage d'une sortie TOR d'API comme combinaison de 2 entrées TOR.
- Mettre en œuvre un dialogue opérateur et d'afficher des informations d'entrées TOR.

2. Préparation

Le schéma de base est la commande de la presse d'emboutissage, comme dans le sujet précédent Sect° 2505.

Le détecteur électronique TOR et le bouton-poussoir seront connectés chacun sur une entrée TOR d'API.

Vous disposez :

- de détecteurs électroniques de proximité TOR, d'un contacteur LC1D09xx, d'alimentations TBTS 24 V DC et AC,
- d'un automate programmable industriel (API) Schneider Twido TWDLCAA24DRF,
- de l'application Windows Schneider TwidoSoft et d'un cordon de programmation série TSXPCX1030/1031,
- d'un dialogue opérateur de type MAGELIS de la marque Schneider-Electric,
- de cordons de programmation et d'exploitation du dialogue opérateur.

Les vidéo-formations sont disponibles sur la médiathèque. On peut connecter 2 casques sur les ordinateurs.

2.1. Schémas électriques et fonctions

> Utiliser le même schéma de commande et puissance que la manipulation précédente.

> Choisir un détecteur parmi les différents modèles disponibles dans l'atelier, établir le schéma de mise en œuvre sur une entrée d'API et effectuer toutes les vérifications de compatibilité nécessaires.

3. Manipulations

Attention :

• NE PAS connecter la sortie 24VDC de l'API à une alimentation externe !!

• Afin d'optimiser la progression, ne pas câbler la partie puissance avant d'avoir mis en œuvre et justifié toute la partie commande du sujet.

3.1. Câblage des entrées

• Mettre en œuvre le détecteur et le bouton-poussoir sur les entrées API.

• Vérifier le changement d'état des entrées d'API en fonction de l'état du détecteur et du bouton-poussoir à l'aide des voyants en façade de l'API.

3.2. Paramétrage logiciel

• En vous aidant de la vidéo-formation de paramétrage d'un nouveau projet TwidoSoft, créer un nouveau projet TwidoSoft et configurer l'automate dans ce projet. Charger le paramétrage dans l'API.

- Vérifier la prise en compte des entrées TOR à partir des outils de diagnostic Twidosoft.
- Mettre en œuvre le programme d'activation d'une sortie TOR lorsque les 2 entrées sont actives.

3.3. Mise en œuvre d'un pupitre opérateur Architecture d'un système avec pupitre opérateur :

• Choisir un pupitre opérateur parmi les différents modèles disponibles. Vous pouvez obtenir les références précises du modèle choisi en ouvrant le boitier plastique dans lequel il est installé.

- Consulter le guide de mise en œuvre d'un pupitre opérateur MAGELIS sur la médiathèque.
- Rechercher les références de cordons nécessaires à la programmation depuis l'ordinateur, et à l'exploitation avec un Twido.

• Consulter la vidéo-formation de programmation d'un pupitre opérateur MAGELIS sur la médiathèque. Des casques -écouteurs sont disponibles pour accéder à la partie audio.

- Configurer le pupitre opérateur en notant bien :
 - ✓ le protocole de communication avec le Twido,
 - ✓ L'adresse de début de la table de dialogue (prendre par exemple %MW100),
 - le nombre de mots échangés dans la table de dialogue,
 - ✓ l'adresse de fin de la table de dialogue.
- Définir sur le pupitre opérateur une page de dialogue de base :
 - Insérer un texte statique de votre choix ;

 Insérer un champ numérique lié au mot interne %MW20, affiché en binaire (%MW20 recevra une copie des bits d'entrées TOR)

Dans le programme API (sous TwidoSoft) :

✓ Insérer une ligne qui permet de réserver l'espace mémoire du Twido nécessaire jusqu'à au moins l'adresse de fin de la table de dialogue : Bloc opération : %MW110 := %MW110

- ✓ Insérer une ligne qui recopie les 14 entrées TOR de l'API dans le mot %MW20 : %MW20 : =%I0.0:14
- Mettre en œuvre l'ensemble API-Dialogue opérateur et vérifier le bon fonctionnement.
- Modifier le mot d'affichage du champ sur le Pupitre :
 - ✓ Affichage en décimal
 - ✓ Affichage selon une liste de textes